KDST

KDST는 딥러닝을 중심으로 AI와 데이터에 관련된 여러 주제에 대해서 연구하는 팀입니다.

pruning 3

Manifold Regularized Dynamic Network Pruning (CVPR 2021) 논문 리뷰

이번 글에서는 CVPR 2021에 accept된 Pruning 논문 중 하나인 Manifold Regularized Dynamic Network Pruning 을 리뷰하도록 하겠습니다. 먼저 Dynamic pruning에 대해 알아보겠습니다. 기존의 channel pruning 방식들은 channel을 static하게 제거하기 때문에 모든 sample에 같은 구조의 network를 사용합니다. 하지만 실제로는 filter/channel의 중요도는 input에 따라 매우 다릅니다. 아래 그림은 Dynamic pruning을 처음 제안한 Dynamic channel pruning: Feature boosting and suppression 에서 가져왔습니다. Pretrained ResNet-18로 image..

카테고리 없음 2021.07.01

Neuron Merging: Compensating for Pruned Neurons (Accepted at NeurIPS 2020)

안녕하세요, KDST에서 인턴 연구원으로 근무했던 김우정입니다. 이번에 김수현 박사님, 박민철 인턴 연구원님, 전근석 학연님과 함께 제출했던 논문이 NeurIPS (NIPS) 2020에 poster presentation으로 accept 되었습니다. 논문 제목은 "Neuron Merging: Compensating for Pruned Neurons" 입니다. 기존 structured network pruning 논문들에서는 신경망에서 덜 중요한 뉴런이나 필터를 제거하고 accuracy를 회복하기 위하여 fine-tuning을 합니다. 하지만 이때 제거된 뉴런에 상응하는 다음 layer의 차원 또한 제거됩니다. 따라서 pruning 직후에 다음 layer의 output feature map이 원래 모델과 ..

카테고리 없음 2020.09.27

"Network Slimming" Review

본 포스팅은 Deep Convolutional Neural Network의 running time 최적화를 위해 channel level pruning을 도입한 "Learning Efficient Convolutional Networks through Network Slimming" (ICCV 2017)를 리뷰하도록 하겠습니다. 포스팅에 앞서, 주제와 관련된 모든 연구 내용은 Learning Efficient Convolutional Networks through Network Slimming을 참조했음을 먼저 밝힙니다. History Convolutional Neural Networks (CNNs)가 다양한 Computer Vision Task 처리에 중요한 솔루션으로 도입이 된 이후, 실제 응용된 어..

카테고리 없음 2019.10.24