KDST

KDST는 딥러닝을 중심으로 AI와 데이터에 관련된 여러 주제에 대해서 연구하는 팀입니다.

2022/11 2

Simsiam: Exploring Simple Siamese Representation Learning (CVPR 2021)

안녕하세요 KDST 팀의 강민수입니다. 오늘 소개해드릴 논문은 Facebook AI 팀에서 발표한 Simsiam architecture를 활용하여 unsupervised learning 방식 중 하나인 contrastive learning 을 하는 방식입니다. 전통적인 contrastive learning method들은 한 이미지를 대상으로 strong augmentation을 취해서 유사한 이미지를 만듭니다. 이후, augmentation된 이미지들은 서로 같게, 서로 다른 instance의 이미지는 embedding vector가 다르게 학습함으로서 feature representation learning을 하게 됩니다. 이런 상황에서 model을 shared해서 모두 같은 이미지를 흘리는 방식도 ..

카테고리 없음 2022.11.30

A Fine-Grained Analysis on Distribution Shift (ICLR 2022 Oral)

안녕하세요, KDST팀 김동진입니다. 오늘 소개해드릴 논문은 distribution shift에서의 generalization 발생을 분석 가능하게 하는 framework을 제안하고, 이 framework를 이용하여 다양한 distribution shift의 기반이 되는 3가지 distribution shift를 정의하고 추가적인 2가지 조건(label noise, train dataset 사이즈)에서 robustness를 가져올 수 있는 다양한 방법론들을 평가 및 비교한 논문입니다. 논문에는 진행한 실험 분석의 결과들이 Takeaways에 정리되어있고, distribution shift 문제에 대응해야 할 때 도움이 될 수 있는 팁들 또한 Pratical tips에 정리되어있어 참고하시면 좋을 것 같습..

카테고리 없음 2022.11.30