KDST

KDST는 딥러닝을 중심으로 AI와 데이터에 관련된 여러 주제에 대해서 연구하는 팀입니다.

2022/08 3

Prioritized Training on Points that are learnable, Worth Learning, and Not Yet Learnt

안녕하세요. 서울대학교 VMO 연구실 신광용입니다. 8/11 세미나 내용 요약입니다. 효율적인 학습을 위해 학습 데이터를 랜덤하게 선택하는 대신 데이터를 선별해서 학습하는 방법이 존재하는데, 보통 데이터를 선택할 때 training loss 또는 gradient 값이 큰 데이터 위주로 선택했습니다. 이 논문은 기존 방법들은 학습해서는 안되는 noisy, 혹은 학습 중요도가 낮은 outlier 데이터 위주로 선택하는 단점이 있다는 점을 보여주고, 이 단점들을 개선한 방법을 제안합니다. 이 논문의 학습 데이터 선택 기준은 training loss뿐만 아니라, 따로 분리한 holdout 데이터셋에 학습한 모델에서의 loss 값 또한 참고합니다. 후자 loss을 irreducible holdout loss(IL..

카테고리 없음 2022.08.29

On bridging generic and personalized federated learning for image classification (ICLR 2022 Spotlight)

안녕하세요 서울대학교 VMO 연구실 김민재입니다. 7/28 세미나 내용 간략히 공유해 드립니다. 연합 학습은 각 클라이언트가 가지고 있는 데이터에 직접 접근하지 않으면서도, 여러 클라이언트가 서로 협력하여 글로벌 모델을 학습할 수 있게 하지만 각 클라이언트가 가지고 있는 데이터가 heterogeneous 할 경우 그 성능이 떨어지는 문제를 가지고 있습니다. 이러한 차이는 더 나아가 다음과 같은 딜레마로 이어집니다. "학습된 모델의 일반 성능(Generic) 혹은 개인화된 성능(Personalized)을 우선시해야 하는가?" 겉보기에 상충되는 이 두 가지 목표는 FL paper 들이 둘 중 하나에 초점을 맞추게 하였지만, 본 논문에서는 두 가지 목표에 동시에 접근할 수 있음을 보여줍니다. 구체적으로, 모델..

카테고리 없음 2022.08.27

Fairness and Bias In AI

안녕하세요. 서울대학교 석박통합연구생 유상윤 입니다. 8월 25일 세미나 관련 내용 요약입니다. Fairness는 모호한 개념이지만 Fairness를 achieve하는 방법은 크게 두가지로 나눌 수 있다. 1. Fairness through Blindness. 2. Fairness through Awareness. Fairness through Blindness가 필요한 상황은 단순히 Subpopulation Shift로 인해서 Bias가 발생한 경우로, Sensitive Attribute을 의도적으로 무시하는 것이 Fairness에 도움이 되는 경우이다. Subpopulation Shift 문제란 group별로 sample의 갯수가 다르다거나, entropy가 달라 단순히 전체 loss를 minimiz..

카테고리 없음 2022.08.26