안녕하세요 서울대학교 VMO 연구실 김민재입니다. 7/28 세미나 내용 간략히 공유해 드립니다. 연합 학습은 각 클라이언트가 가지고 있는 데이터에 직접 접근하지 않으면서도, 여러 클라이언트가 서로 협력하여 글로벌 모델을 학습할 수 있게 하지만 각 클라이언트가 가지고 있는 데이터가 heterogeneous 할 경우 그 성능이 떨어지는 문제를 가지고 있습니다. 이러한 차이는 더 나아가 다음과 같은 딜레마로 이어집니다. "학습된 모델의 일반 성능(Generic) 혹은 개인화된 성능(Personalized)을 우선시해야 하는가?" 겉보기에 상충되는 이 두 가지 목표는 FL paper 들이 둘 중 하나에 초점을 맞추게 하였지만, 본 논문에서는 두 가지 목표에 동시에 접근할 수 있음을 보여줍니다. 구체적으로, 모델..